# Inverse Parameter Estimation Ronald DeVore 

Collaborators: Andrea Bonito, Albert Cohen, Guergana Petrova, Gerrit Welper

## Motivation

- Parametric PDEs are used to model complex physical systems
- Uncertainty Quantification: We may have uncertainty in the parameters (or even the model)
- However we have some information (measurements) of the state (solution to the pde)
- Using this information, what can we say about the parameters giving rise to this state?
- This talk concerns rigorous theory to answer this question


## The Setting

- We limit ourselves to the friendly setting of Parametric Elliptic PDEs
$D \subset \mathbb{R}^{d}$ is a Lipschitz domain and $\mathcal{A}$ is the collection of diffusion coefficients $a \in L_{\infty}(D)$ that satisfy the Uniform Ellipticity Assumption
UEA: $0<r \leq a(x) \leq R, \quad x \in D, \quad$ for all $a \in \mathcal{A}$
- For each $a \in \mathcal{A}$ we are interested in the solution $u_{a}$ to

$$
\begin{aligned}
-\operatorname{div}\left(a(x) \nabla u_{a}(x)\right) & =f(x), & & x \in D, \\
u_{a}(x) & =0, & & x \in \partial D
\end{aligned}
$$

- Let $\mathcal{M}:=\mathcal{M}(f, \mathcal{A})=\left\{u_{a}: a \in \mathcal{A}\right\}$ be the solution manifold and $F: a \mapsto u_{a}$ the solution map


## Additional Structure

- Usually we work with subsets $\mathcal{A}_{0} \subset \mathcal{A}$ which impose additional structure on the diffusion coefficients
- The affine model: $a$ satisfies UEA, i.e. $a \in \mathcal{A}$ and
- $a(x, y)=\bar{a}(x)+\sum_{j=1}^{\infty} y_{j} \psi_{j}(x), y_{j} \in[-1,1], j=1,2, \ldots$
- Notation: $\mathcal{P}:=[-1,1]^{\mathcal{N}}$ the set of parameters and $u(x, y):=u_{a}(x)$
- We typically impose further restrictions on the affine decomposition such as decay for the $\left\|\psi_{j}\right\|_{L_{\infty}(D)}$, for example $\left(\left\|\psi_{j}\right\|_{L_{\infty}(D)}\right)_{j \geq 1} \in \ell_{p}$ with $p<1$
- Second example: $\mathcal{A}_{s}:=\mathcal{A}_{s}(M):=\left\{a \in \mathcal{A}:\|a\|_{H^{s}} \leq M\right\}$
- Note in this example we still have the condition that $a \in L_{\infty}(D)$


## Parameter Identification

- First Question: Does $u_{a}$ determine $a$ ?
- We fix $f$ and ask whether the solution map $F: a \rightarrow u_{a}$ is invertible


The answer depends on $f$.

## Parameter Identification

If for some $a \in \mathcal{A}$ we have $\nabla u_{a}$ vanishes on an open subset $D_{0} \subset D$ then for any $b$ which agrees with $a$ outside of $D_{0}$, we have $u_{a}=u_{b}$ and therefore there is no uniqueness


- To avoid this, we assume always that $f \in L_{\infty}(D)$ and $f>0$ on $D$
- Problem 1: Does this guarantee unique invertibility of $F$


## The forward map

Before analyzing the inverse map we recall results about the smoothness of the forward map $F$

- The usual estimate is

$$
\left\|u_{a}-u_{b}\right\|_{H^{1}(D)} \leq \frac{\|f\|_{H^{-1}}}{r^{2}}\|a-b\|_{L_{\infty}(D)}
$$

- The above is not useful when $a, b$ have jump discontinuities that do not match
- Improved estimates (Bonito-DeVore-Nochetto): If $p \geq 2$ and $q:=\frac{2 p}{p-2}$ then

$$
\left\|u_{a}-u_{b}\right\|_{H^{1}(D)} \leq r^{-1}\left\|\nabla u_{a}\right\|_{L_{p}(D)}\|a-b\|_{L_{q}(D)}, \quad q=\frac{2 p}{p-2}
$$

- Note that since $a \in L_{\infty}(D)$, we obtain

$$
\left\|u_{a}-u_{b}\right\|_{H^{1}(D)} \leq C\left\|\nabla u_{a}\right\|_{L_{p}(D)}\|a-b\|_{L_{2}(D)}^{\theta}, \quad \theta=2 / q
$$

## Sufficient conditions

- The previous result requires $\nabla u_{a} \in L_{p}$
- Sufficient conditions on $a$ which guarantee $\nabla u_{a} \in L_{p}$ ?
- There is always a range of $p>2$ (depending only on $D$ ), i.e. $2 \leq p<P$. where this is true for all $a \in \mathcal{A}$
- Hence there is always a $\theta=\theta(D)>0$ such that for all $a \in \mathcal{A}$ we have

$$
\left\|u_{a}-u_{b}\right\|_{H^{1}(D)} \leq C\|a-b\|_{L_{2}(D)}^{\theta}
$$

- if $a \in \mathrm{VMO}$ then $\nabla u_{a} \in L_{p}(D)$ for all $p<\infty$
- Hence for all $0<\theta<1$ and all $a \in \mathcal{A} \cap V M O$ we have

$$
\left\|u_{a}-u_{b}\right\|_{H^{1}(D)} \leq C\|a-b\|_{L_{2}(D)}^{\theta}
$$

- Here $C$ depends on $p$ and the VMO modulus of $a$


## Inverse Map 1D

If $D=[0,1]$ and $f \geq c>0$ is in $L_{\infty}(D)$ the analysis is simple

- For any $a, b \in \mathcal{A}$ we have $\left\|u_{a}-u_{b}\right\|_{H_{1}} \leq C\|a-b\|_{L_{2}[0,1]}$
- For any $a, b \in \mathcal{A}$ we have $\|a-b\|_{L_{2}[0,1]} \leq C\left\|u_{a}-u_{b}\right\|_{H_{1}}^{1 / 3}$
- The exponent $1 / 3$ cannot be improved
- Notice that these results hold with no additional assumptions on $a$ other than UEA, i.e. $a \in \mathcal{A}$


## Higher Dimensions

- In higher space dimension $d \geq 2$ the situation is more complex and the results are not as complete
- We assume $f \geq c>0$ and $f \in L_{\infty}(D)$, with $D$ Lipschitz
- In this setting, I do not even know if $u_{a}$ uniquely determines $a \in \mathcal{A}$ (see Problem 1)
- We can show unique determination of $a$ and smoothness for the inverse map $u_{a} \mapsto a$ provided we impose extra conditions on the diffusion coefficients $a$
- In Bonito-Cohen-DeVore-Petrova-Welper we prove results of the type

$$
\|a-b\|_{L_{2}(D)} \leq C\left\|u_{a}-u_{b}\right\|_{H^{1}(D)}^{\beta}
$$

- In otherwords, we prove that the inverse map is $\operatorname{Lip} \beta$ under additional assumptions on the diffusion coeff.


## Values of $\beta$

- Under the additional assumption that the diffusion coefficients are in $\mathcal{A}_{1}(D)$ we have $\beta=1 / 6$
- Under the additional assumption that the diffusion coefficients are in $\mathcal{A}_{s}(D) \cap \operatorname{VMO}(\varphi)$ with $s>1 / 2$, we can prove that there is $\beta=\beta(s)>0$
- We can drop the VMO requirement provided
$a, b \in \mathcal{A}_{s}(D)$ and $s>s^{*}$ with $s^{*}<1$ depending only on $D$
- These results do not apply if $a, b$ are piecewise constant. However, in this case we have the following:
- Let $\mathcal{P}_{n}$ be the partition of $D=[0,1]^{d}$ into $n^{d}$ cubes of equal side length $1 / n$ and let $\mathcal{A}^{n}$ be the set of diffusion coefficients in $\mathcal{A}$ that are piecewise constant subordinate to $\mathcal{P}_{n}$
- $\|a-b\|_{L_{2}} \leq C n\left\|u_{a}-u_{b}\right\|_{H^{1}(D)}, \quad a, b \in \mathcal{A}^{n}$


## Lip $\beta$ smoothness of inverse map



## Summary

- Under moderate assumptions on the diffusion coeff.
- $\left\|u_{a}-u_{b}\right\|_{H_{0}^{1}(D)} \leq C\|a-b\|_{L_{2}(D)}^{\alpha}$ for some $\alpha>0$
- $\|a-b\|_{L_{2}(D)} \leq C\left\|u_{a}-u_{b}\right\|_{H_{0}^{1}(D)}^{\beta}$ for some $\beta>0$
- If we observe the full state $u_{a}$ this still does not tell us how to find $a$. In most settings, we do not observe the full state $u_{a}$ but rather just partial information, namely, a finite number of measurements of the state
- The remainder of this talk will address how well we can expect to recover $a$ with this partial information. These are difficult questions- results are limited
- In Uncertainty Quantification one assumes that parameters occur with an underlying probability distribution: the most closely related results are in Schwab-Stuart - IP 2012


## The Numerical Setting

- We assume that we have a finite number of measurements $l_{j}\left(u_{a}\right)=w_{j}, j=1, \ldots, m$, of the state $u_{a}$
- Since we are in a Hilbert space $\mathcal{H}:=H_{0}^{1}(D)$ we can write $l_{j}=\left\langle\cdot, \omega_{j}\right\rangle$ with $\omega_{j} \in \mathcal{H}$
- We let $W:=\operatorname{span}\left\{\omega_{1}, \ldots, \omega_{m}\right\}$
- Then we can view the information we have as we are given $w=P_{W}\left(u_{a}\right)$
- Let $\mathcal{A}_{0} \subset \mathcal{A}$ where membership in $\mathcal{A}_{0}$ may impose additional smoothness conditions on $a$. Once we have $\mathcal{A}_{0}$ fixed there is an $\alpha, \beta$
- Notice that there are typically many $a \in \mathcal{A}_{0}$ for which $P_{W}\left(u_{a}\right)=w$ and so we need to clarify our goal.


# Non-uniqueness of $M\left(u_{a}\right)=w$ 



## Goals

- Given any $w \in W$ (which may or may not be a measurement of some $u_{a}, a \in \mathcal{A}_{0}$ ) define the sets
$S_{w}(\eta):=\left\{b \in \mathcal{A}_{0}:\left\|P_{W}\left(u_{b}\right)-w\right\|_{L_{2}(D)} \leq \eta\right\}, \quad \eta \geq 0$
- Ideal Goal: Describe $\mathcal{S}_{w}(0)$
- This is too demanding for several reasons
- Noise: If measurements are noisy, say we observe $\hat{w}$ then the $a$ we seek is only in $\mathcal{S}_{w}(\delta)$ for some $\delta>0$ depending on the noise level
- Numerical issues: We cannot expect to compute an $a$ in $\mathcal{S}_{w}(\eta)$ only an approximation to such an $a$
- Computational resources: Decreasing $\eta$ will eat up more and more computational resources eventually becoming unreasonable


## Possible Goals: Smallest Ball

- The user provides a tolerance $\eta \geq 0$,
- Smallest Ball: Find a ball $B\left(a^{*}, R^{*}\right)$ in $L_{2}(D)$ such that $a^{*} \in \mathcal{A}_{0}$ and $S_{w}(\eta) \subset B\left(a^{*}, R^{*}\right)$ with the ball as small as possible:
- The smallest ball is the Chebyshev ball of $\mathcal{S}_{w}(\eta)$
- $a^{*}$ would give a (coarse) approximation to all possible $a$


## Smallest ball for $\mathcal{S}_{w}(0)$



Zürich 2017 - o. 18/32

## Possible Goals: Sketch

- The user provides a tolerance $\eta \geq 0$,
- Sketch: Find a small discrete set $\hat{S}$ that gives an $\epsilon$ net for $S_{w}(\eta)$
- Smallest set is the entropy cover of $\mathcal{S}_{w}(\eta)$
- Therefore we would like cardinality of $\hat{S}$ to be comparable to the covering number $N_{\epsilon}\left(\mathcal{S}_{w}(\eta)\right)$


## Sketch for $\mathcal{S}_{w}(\eta)$



Zürich 2017 - p. 20/32

## $\epsilon$ net



Zürich 2017 - D. 21/32

## Covering



Zürich 2017 - D. 22/32

## Smallest Ball

- Algorithms for finding the smallest ball have three components
- I. Use $w$ to find $\hat{u} \in H^{1}(D)$ and $\hat{R}$ such that $B(\hat{u}, \hat{R})$ contains all $u_{a}, a \in \mathcal{A}_{0}$, such that $M\left(u_{a}\right)=w$
- II. Find $b \in \mathcal{A}_{0}$ such that $u_{b}$ approximates $\hat{u}$ at least to the precision $\hat{R}$
- III. Use the smoothness of the inverse map and the knowledge of $u_{b}$ to find a ball $B(b, \tilde{R})$ which contains all $a \in \mathcal{A}_{0}$ such that $M\left(u_{a}\right)=w$
- III. Our inverse theorem gives $\tilde{R} \leq C(2 \hat{R})^{\beta}$. Indeed,

$$
\|a-b\|_{L_{2}(D)} \leq C\left\|u_{a}-u_{b}\right\|_{H_{0}^{1}(D)}^{\beta} \leq C(2 \hat{R})^{\beta}
$$

- So Task III is easy once the other tasks are complete


## I. by Reduced Modeling

- Task I is complicated by the fact that the solution manifold $\mathcal{M}:=\left\{u_{a}: a \in \mathcal{A}_{0}\right\}$ is not easy to understand
- Strategy is to replace $\mathcal{M}$ by a reduced model
- Such models produce a low dimensional linear space $V \subset H^{1}(D)$ such that $\operatorname{dist}(\mathcal{M}, V)$ is small enough to complete Task I
- Two strategies for doing this
- Greedy Algorithms
- High dimensional polynomial expansions


## Greedy algorithms

- These algorithms choose (through greedy selection) snapshots $v_{1}=u_{a_{1}}, \ldots, v_{n}:=u_{a_{n}}$ so that $V_{n}:=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ is a good approximation to $\mathcal{M}$
- Greedy strategy introduced by

Buffa-Maday-Patera-Prud'homme-Turinici chooses the $k$-th snapshot which is furthest from $V_{k-1}$

- Theorem
(Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk)
- If there exist $n$ dimensional spaces $Y_{n} \subset \mathcal{H}_{0}^{1}(D)$ such that $\operatorname{dist}\left(\mathcal{M}, Y_{n}\right) \leq C n^{-\alpha}, \quad n=1, \ldots, N$ then $\operatorname{dist}\left(\mathcal{M}, V_{n}\right) \leq C^{\prime} n^{-\alpha}, \quad n=1, \ldots, N$
- Almost optimal in terms of $n$ widths
- These algorithms have a very costly off-line implementation


## Polynomial Expansions

- Cohen-DeVore-Schwab I,II, Chkifa-Cohen-DeVore-Schwab, +
- If the $a$ have an affine expansion with
$\left(\left\|\psi_{j}\right\|_{L_{\infty}(D)}\right)_{j \geq 1} \in \ell_{p}, \quad p<1$
- Then $u(x, y)=\sum_{\nu} u_{\nu}(x) y^{\nu}$ with $\left(\left\|u_{\nu}\right\|_{H_{0}^{1}(D)}\right) \in \ell_{p}$
- It follows that for each $n \geq 1$, there is a set $\Lambda_{n}$ such that
- $\#\left(\Lambda_{n}\right)=n$
- $\sup _{y \in \mathcal{P}}\left\|u(\cdot, y)-\sum_{\nu \in \Lambda_{n}} u_{\nu} y^{\nu}\right\|_{H_{0}^{1}(D)} \leq C n^{-1 / p+1}$
- This gives certifiable decay of $n$ widths of $\mathcal{M}$
- $u_{\nu}$ found by recursively solving PDEs
- Finding $\Lambda_{n}$ costly


## Assimilating Data

- Take a reduced space $V=V_{n}$ : what is a good choice for $V$ will be uncovered as we proceed
- Let $\mathcal{N}$ be the null space of the measurement map $M$
- Define $\mu(\mathcal{N}, V):=\sup _{\eta \in \mathcal{N}} \frac{\|\eta\|_{H^{1}}}{\operatorname{dist}(\eta, V)_{H^{1}}}$
- $\mu$ is the reciprocal of the angle between $V$ and $W$
- Let $\quad v^{*}(w)=\operatorname{Argmin}_{v \in V}\|w-M(v)\|_{\ell_{2}}$
- Then, Maday-Patera -Penn-Yano show that the ball $B\left(v^{*}(w), \hat{R}\right)$, with $\hat{R}:=2 \mu\left(\mathcal{N}, V^{*}\right) \operatorname{dist}\left(\mathcal{M}, V^{*}\right)_{H^{1}}$, contains all $u_{a} \in \mathcal{M}$ such that $M\left(u_{a}\right)=w$. So we take $\hat{u}:=v^{*}(w)$
- The best choice $V^{*}$ is one which minimizes $\mu(\mathcal{N}, V) \operatorname{dist}(\mathcal{M}, V)_{H^{1}}$ over all $V \subset H_{0}^{1}$. This would complete Task I with $\hat{R}=2 \mu\left(\mathcal{N}, V^{*}\right) \operatorname{dist}\left(\mathcal{M}, V^{*}\right)_{H^{1}}$


## Task II

- We know $\hat{u}:=v^{*}(w)$ and we want to find $b \in \mathcal{A}_{0}$ such that $\left\|v^{*}(w)-u_{b}\right\|_{H_{0}^{1}(D)} \leq C \hat{R}$
- As long as $C \geq 2$ we know there are such $b$
- One way to find such a $b$ is to search over a (minimal) set $\mathcal{A}^{n} \subset \mathcal{A}_{0}$ such that $\mathcal{A}^{n}=\left\{a_{j}\right\}$ is an $\epsilon$ net for $\mathcal{A}_{0}$ with $\epsilon:=\left(\frac{\hat{R}}{C}\right)^{1 / \alpha}$
- Indeed, we know from our results on the forward map that $\left\|u_{a}-u_{a^{\prime}}\right\|_{H^{1}} \leq C_{0}\|a-b\|^{\alpha}$
- Hence, the $u_{a_{j}}$ are an $\epsilon^{\prime}$ net for $\mathcal{A}_{0}$ with $\epsilon^{\prime}=C_{0} \hat{R} / C$
- We use $C$ so that we only have to approximately solve for $u_{a}$ using the reduced space $V^{*}$
- In fact, we never solve for $u_{a}$ but rather use surrogate error estimators based on residuals- these are fast!


## Post Mortem

- The bottlenecks in the above algorithm for finding a ball are
- Finding the space $V^{*}$
- Can we do this via greedy selection?
- The usual greedy algorithms do not take into account $\mu(\mathcal{N}, V)$
- The discretization of $\mathcal{A}^{n}$ - this manifests itself when the number of parameters is large
- For an affine model of the parameters, we quantize the $y_{j}$ with fine quantization when $\left\|\psi_{j}\right\|_{L_{\infty}(D)}$ is large and coarse quantization when it is small


## Finding a sketch of $\mathcal{S}_{w}(\eta)$

- A dream algorithm for sketching would be one which identifies an $\epsilon$ net for $S_{w}(\eta)$ whose size and computational costs are proportional to $N_{\epsilon}\left(\mathcal{S}_{w}(\eta)\right)$
- We proceed to describe the main ingredients of such algorithms in the case of the affine model
- One constructs recursively
- Discretizations $\mathcal{A}^{1}, \mathcal{A}^{2}, \ldots$ of $\mathcal{A}_{0}$ using quantization of the $y_{j}$ as described earlier
- Reduced model spaces $V_{1}, V_{2}, \ldots$ with control on $\mu\left(\mathcal{N}, V_{n}\right) \operatorname{dist}\left(\mathcal{M}, V_{n}\right)$
- Using residual error estimators one can define cheap surrogates for computing $\left\|w-M\left(u_{a}\right)\right\|_{\ell_{2}}$


## Testing points in $\mathcal{A}^{n}$

- Points in $\mathcal{A}^{n}$ can then be tested, i.e., one computes an approximation to $\left\|w-M\left(u_{a}\right)\right\|_{\ell_{2}}$ at the needed accuracy and thereby $\mathcal{A}^{n}$ can be decomposed into subsets
- $\mathcal{A}^{n}$ (out): These are points in $\mathcal{A}^{n}$ which one can not only say these points can not be in $\mathcal{S}_{w}(\eta)$ but also regions of $\mathcal{A}_{0}$ near these points can be eliminated from firther consideration because the residual error is too large. Here one uses the direct and inverse estimates.
- $\mathcal{A}^{n}(i n)$ : These are points in $\mathcal{A}^{n}$ that cannot be eliminated because the residual error estimate is not large enough
- The sets $\mathcal{A}^{n}(i n)$ give finer and finer nets for $\mathcal{S}_{w}(\eta)$


## Bottlenecks

- As before finding good educed model spaces
$\mu(\mathcal{N}, V) \operatorname{dist}(\mathcal{M}, V)$
- The usual greedy algorithms or polynomial basis selections do not pay attention to $\mu$ - naturally because they were not formulated with measurements in mind
- Greedy algorithms are numerically intensive
- The cardinality of the sets $\mathcal{A}^{n}(i n)$ grow exponentially in $n$ limiting how large one can choose $n$
- This may lie in the nature of the problem since $\epsilon$ nets typically grow like $\epsilon^{-\tau}$ with $\tau$ moderately large
- It would be good to have a priori theoretical bounds for $N_{\epsilon}\left(\mathcal{S}_{w}(\eta)\right)$

