Inverse Parameter Estimation Ronald DeVore

Collaborators: Andrea Bonito, Albert Cohen, Guergana Petrova, Gerrit Welper

Zürich 2017 – p. 1/32

Motivation

- Parametric PDEs are used to model complex physical systems
- Uncertainty Quantification: We may have uncertainty in the parameters (or even the model)
- However we have some information (measurements) of the state (solution to the pde)
- Using this information, what can we say about the parameters giving rise to this state?
- This talk concerns rigorous theory to answer this question

The Setting

- We limit ourselves to the friendly setting of Parametric Elliptic PDEs
- $D \subset \mathbb{R}^d$ is a Lipschitz domain and \mathcal{A} is the collection of diffusion coefficients $a \in L_{\infty}(D)$ that satisfy the Uniform Ellipticity Assumption

UEA: $0 < r \le a(x) \le R$, $x \in D$, for all $a \in \mathcal{A}$

• For each $a \in \mathcal{A}$ we are interested in the solution u_a to

$$-\operatorname{div}(a(x)\nabla u_a(x)) = f(x), \quad x \in D, \\ u_a(x) = 0, \quad x \in \partial D$$

• Let $\mathcal{M} := \mathcal{M}(f, \mathcal{A}) = \{u_a : a \in \mathcal{A}\}$ be the solution manifold and $F : a \mapsto u_a$ the solution map

Zürich 2017 – p. 3/32

Additional Structure

- Usually we work with subsets $\mathcal{A}_0 \subset \mathcal{A}$ which impose additional structure on the diffusion coefficients
- The affine model: a satisfies UEA, i.e. $a \in A$ and
 - $a(x,y) = \bar{a}(x) + \sum_{j=1}^{\infty} y_j \psi_j(x), y_j \in [-1,1], j = 1, 2, \dots$
 - Notation: $\mathcal{P} := [-1, 1]^{\mathcal{N}}$ the set of parameters and $u(x, y) := u_a(x)$
 - We typically impose further restrictions on the affine decomposition such as decay for the $\|\psi_j\|_{L_{\infty}(D)}$, for example $(\|\psi_j\|_{L_{\infty}(D)})_{j\geq 1} \in \ell_p$ with p < 1
- Second example: $\mathcal{A}_s := \mathcal{A}_s(M) := \{a \in \mathcal{A} : ||a||_{H^s} \le M\}$
 - Note in this example we still have the condition that $a \in L_{\infty}(D)$

Parameter Identification

- First Question: Does u_a determine a?
- We fix f and ask whether the solution map $F: a \rightarrow u_a$ is invertible

Zürich 2017 – p. 5/32

• The answer depends on f.

Parameter Identification

If for some *a* ∈ A we have ∇u_a vanishes on an open subset $D_0 \subset D$ then for any *b* which agrees with *a* outside of D_0 , we have $u_a = u_b$ and therefore there is no uniqueness

- To avoid this, we assume always that $f \in L_{\infty}(D)$ and f > 0 on D
- Problem 1: Does this guarantee unique invertibility of F

Zürich 2017 – p. 6/32

The forward map

- Before analyzing the inverse map we recall results about the smoothness of the forward map F
 - The usual estimate is $\|u_a - u_b\|_{H^1(D)} \le \frac{\|f\|_{H^{-1}}}{r^2} \|a - b\|_{L_{\infty}(D)}$
 - The above is not useful when a, b have jump discontinuities that do not match
 - Improved estimates (Bonito-DeVore-Nochetto): If $p \ge 2$ and $q := \frac{2p}{p-2}$ then $\|u_a - u_b\|_{H^1(D)} \le r^{-1} \|\nabla u_a\|_{L_p(D)} \|a - b\|_{L_q(D)}, \quad q = \frac{2p}{p-2}$
 - Note that since $a \in L_{\infty}(D)$, we obtain $\|u_a - u_b\|_{H^1(D)} \leq C \|\nabla u_a\|_{L_p(D)} \|a - b\|_{L_2(D)}^{\theta}, \quad \theta = 2/q$

Zürich 2017 – p. 7/32

Sufficient conditions

- The previous result requires $\nabla u_a \in L_p$
- Sufficient conditions on *a* which guarantee $\nabla u_a \in L_p$?
 - There is always a range of p > 2 (depending only on D), i.e. $2 \le p < P$. where this is true for all $a \in A$
 - Hence there is always a $\theta = \theta(D) > 0$ such that for all $a \in \mathcal{A}$ we have

 $||u_a - u_b||_{H^1(D)} \le C ||a - b||_{L_2(D)}^{\theta}$

- if $a \in \text{VMO}$ then $\nabla u_a \in L_p(D)$ for all $p < \infty$
 - Hence for all $0 < \theta < 1$ and all $a \in \mathcal{A} \cap VMO$ we have

 $||u_a - u_b||_{H^1(D)} \le C ||a - b||_{L_2(D)}^{\theta}$

• Here C depends on p and the VMO modulus of a

Zürich 2017 – p. 8/32

Inverse Map 1D

- If D = [0, 1] and $f \ge c > 0$ is in $L_{\infty}(D)$ the analysis is simple
 - For any $a, b \in A$ we have $||u_a u_b||_{H_1} \le C ||a b||_{L_2[0,1]}$
 - For any $a, b \in \mathcal{A}$ we have $||a b||_{L_2[0,1]} \le C ||u_a u_b||_{H_1}^{1/3}$
 - The exponent 1/3 cannot be improved
 - Notice that these results hold with no additional assumptions on a other than UEA, i.e. $a \in A$

Higher Dimensions

- In higher space dimension $d \ge 2$ the situation is more complex and the results are not as complete
- We assume $f \ge c > 0$ and $f \in L_{\infty}(D)$, with D Lipschitz
 - In this setting, I do not even know if u_a uniquely determines $a \in \mathcal{A}$ (see Problem 1)
- We can show unique determination of a and smoothness for the inverse map $u_a \mapsto a$ provided we impose extra conditions on the diffusion coefficients a
- In Bonito-Cohen-DeVore-Petrova-Welper we prove results of the type

$$||a - b||_{L_2(D)} \le C ||u_a - u_b||_{H^1(D)}^{\beta}$$

• In otherwords, we prove that the inverse map is $\text{Lip }\beta$ under additional assumptions on the diffusion coeff. —

Zürich 2017 – p. 10/32

Values of β

- Under the additional assumption that the diffusion coefficients are in $A_1(D)$ we have $\beta = 1/6$
- Under the additional assumption that the diffusion coefficients are in $\mathcal{A}_s(D) \cap \text{VMO}(\varphi)$ with s > 1/2, we can prove that there is $\beta = \beta(s) > 0$
- We can drop the VMO requirement provided $a, b \in \mathcal{A}_s(D)$ and $s > s^*$ with $s^* < 1$ depending only on D
- These results do not apply if a, b are piecewise constant. However, in this case we have the following:
 - Let \mathcal{P}_n be the partition of $D = [0, 1]^d$ into n^d cubes of equal side length 1/n and let \mathcal{A}^n be the set of diffusion coefficients in \mathcal{A} that are piecewise constant subordinate to \mathcal{P}_n
 - $||a b||_{L_2} \le Cn ||u_a u_b||_{H^1(D)}, \quad a, b \in \mathcal{A}^n$

Zürich 2017 – p. 11/32

Lip β smoothness of inverse map

Zürich 2017 – p. 12/32

Summary

Under moderate assumptions on the diffusion coeff.

• $||u_a - u_b||_{H^1_0(D)} \le C ||a - b||^{\alpha}_{L_2(D)}$ for some $\alpha > 0$

• $||a - b||_{L_2(D)} \le C ||u_a - u_b||^{\beta}_{H^1_0(D)}$ for some $\beta > 0$

- If we observe the full state u_a this still does not tell us how to find a. In most settings, we do not observe the full state u_a but rather just partial information, namely, a finite number of measurements of the state
- The remainder of this talk will address how well we can expect to recover *a* with this partial information. These are difficult questions- results are limited
- In Uncertainty Quantification one assumes that parameters occur with an underlying probability distribution: the most closely related results are in Schwab-Stuart - IP 2012

Zürich 2017 – p. 13/32

The Numerical Setting

- We assume that we have a finite number of measurements $l_j(u_a) = w_j$, j = 1, ..., m, of the state u_a
 - Since we are in a Hilbert space $\mathcal{H} := H_0^1(D)$ we can write $l_j = \langle \cdot, \omega_j \rangle$ with $\omega_j \in \mathcal{H}$
 - We let $W := \operatorname{span}\{\omega_1, \ldots, \omega_m\}$
 - Then we can view the information we have as we are given $w = P_W(u_a)$
- Let $A_0 \subset A$ where membership in A_0 may impose additional smoothness conditions on *a*. Once we have A_0 fixed there is an α, β
- Notice that there are typically many $a \in A_0$ for which $P_W(u_a) = w$ and so we need to clarify our goal.

Non-uniqueness of $M(u_a) = w$

$$M(u_a) = M(u_b) = w \in \mathbb{R}^m$$

Zürich 2017 – p. 15/32

Goals

- Given any $w \in W$ (which may or may not be a measurement of some u_a , $a \in \mathcal{A}_0$) define the sets $S_w(\eta) := \{b \in \mathcal{A}_0 : \|P_W(u_b) w\|_{L_2(D)} \leq \eta\}, \quad \eta \geq 0$
- Ideal Goal: Describe $S_w(0)$
- This is too demanding for several reasons
 - Noise: If measurements are noisy, say we observe \hat{w} then the *a* we seek is only in $S_w(\delta)$ for some $\delta > 0$ depending on the noise level
 - Numerical issues: We cannot expect to compute an *a* in $S_w(\eta)$ only an approximation to such an *a*
 - Computational resources: Decreasing η will eat up more and more computational resources eventually becoming unreasonable

Zürich 2017 – p. 16/32

Possible Goals: Smallest Ball

- The user provides a tolerance $\eta \geq 0$,
- Smallest Ball: Find a ball $B(a^*, R^*)$ in $L_2(D)$ such that $a^* \in \mathcal{A}_0$ and $S_w(\eta) \subset B(a^*, R^*)$ with the ball as small as possible:
 - The smallest ball is the Chebyshev ball of $S_w(\eta)$
 - *a** would give a (coarse) approximation to all possible *a*

Smallest ball for $S_w(0)$

Zürich 2017 – p. 18/32

Possible Goals: Sketch

- The user provides a tolerance $\eta \geq 0$,
- Sketch: Find a small discrete set \hat{S} that gives an ϵ net for $S_w(\eta)$
 - Smallest set is the entropy cover of $S_w(\eta)$
 - Therefore we would like cardinality of \hat{S} to be comparable to the covering number $N_{\epsilon}(\mathcal{S}_w(\eta))$

Sketch for $\mathcal{S}_w(\eta)$

Zürich 2017 – p. 20/32

ϵ net

Zürich 2017 – p. 21/32

Zürich 2017 – p. 22/32

Smallest Ball

- Algorithms for finding the smallest ball have three components
 - I. Use w to find $\hat{u} \in H^1(D)$ and \hat{R} such that $B(\hat{u}, \hat{R})$ contains all u_a , $a \in \mathcal{A}_0$, such that $M(u_a) = w$
 - II. Find $b \in A_0$ such that u_b approximates \hat{u} at least to the precision \hat{R}
 - III. Use the smoothness of the inverse map and the knowledge of u_b to find a ball $B(b, \tilde{R})$ which contains all $a \in A_0$ such that $M(u_a) = w$
- III. Our inverse theorem gives $\tilde{R} \leq C(2\hat{R})^{\beta}$. Indeed,

$$|a - b||_{L_2(D)} \le C ||u_a - u_b||^{\beta}_{H^1_0(D)} \le C(2\hat{R})^{\beta}$$

So Task III is easy once the other tasks are complete

Zürich 2017 – p. 23/32

I. by Reduced Modeling

- Task I is complicated by the fact that the solution manifold $\mathcal{M} := \{u_a : a \in \mathcal{A}_0\}$ is not easy to understand
- Strategy is to replace \mathcal{M} by a reduced model
- Such models produce a low dimensional linear space $V \subset H^1(D)$ such that $dist(\mathcal{M}, V)$ is small enough to complete Task I
- Two strategies for doing this
 - Greedy Algorithms
 - High dimensional polynomial expansions

Zürich 2017 – p. 24/32

Greedy algorithms

- These algorithms choose (through greedy selection) snapshots $v_1 = u_{a_1}, \ldots, v_n := u_{a_n}$ so that $V_n := \operatorname{span}\{v_1, \ldots, v_n\}$ is a good approximation to \mathcal{M}
- Greedy strategy introduced by Buffa-Maday-Patera-Prud'homme-Turinici chooses the k-th snapshot which is furthest from V_{k-1}
- Theorem
 (Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk)
 - If there exist *n* dimensional spaces $Y_n \subset \mathcal{H}_0^1(D)$ such that $\operatorname{dist}(\mathcal{M}, Y_n) \leq Cn^{-\alpha}, \quad n = 1, \dots, N$ then $\operatorname{dist}(\mathcal{M}, V_n) \leq C'n^{-\alpha}, \quad n = 1, \dots, N$
 - Almost optimal in terms of n widths
 - These algorithms have a very costly off-line implementation

Zürich 2017 – p. 25/32

Polynomial Expansions

- Cohen-DeVore-Schwab I,II, Chkifa-Cohen-DeVore-Schwab, +
- If the *a* have an affine expansion with $(\|\psi_j\|_{L_{\infty}(D)})_{j\geq 1} \in \ell_p, \quad p < 1$
- Then $u(x,y) = \sum_{\nu} u_{\nu}(x) y^{\nu}$ with $(||u_{\nu}||_{H^{1}_{0}(D)}) \in \ell_{p}$
- It follows that for each n ≥ 1, there is a set Λ_n such that
 #(Λ_n) = n
 - $\sup_{y \in \mathcal{P}} \|u(\cdot, y) \sum_{\nu \in \Lambda_n} u_{\nu} y^{\nu}\|_{H^1_0(D)} \le C n^{-1/p+1}$
- This gives certifiable decay of n widths of \mathcal{M}
- u_{ν} found by recursively solving PDEs
- Finding Λ_n costly

Zürich 2017 – p. 26/32

Assimilating Data

- Take a reduced space $V = V_n$: what is a good choice for V will be uncovered as we proceed
- Let \mathcal{N} be the null space of the measurement map M
- Define $\mu(\mathcal{N}, V) := \sup_{\eta \in \mathcal{N}} \frac{\|\eta\|_{H^1}}{\operatorname{dist}(\eta, V)_{H^1}}$
 - μ is the reciprocal of the angle between V and W
- Let $v^*(w) = \operatorname{Argmin}_{v \in V} \|w M(v)\|_{\ell_2}$
- Then, Maday-Patera -Penn-Yano show that the ball $B(v^*(w), \hat{R})$, with $\hat{R} := 2\mu(\mathcal{N}, V^*) \operatorname{dist}(\mathcal{M}, V^*)_{H^1}$, contains all $u_a \in \mathcal{M}$ such that $M(u_a) = w$. So we take $\hat{u} := v^*(w)$
- The best choice V^* is one which minimizes $\mu(\mathcal{N}, V) \operatorname{dist}(\mathcal{M}, V)_{H^1}$ over all $V \subset H_0^1$. This would complete Task I with $\hat{R} = 2\mu(\mathcal{N}, V^*) \operatorname{dist}(\mathcal{M}, V^*)_{H^1}$ Zürich 2017 – p. 27/32

Task II

- We know $\hat{u} := v^*(w)$ and we want to find $b \in \mathcal{A}_0$ such that $\|v^*(w) u_b\|_{H^1_0(D)} \leq C\hat{R}$
- As long as $C \ge 2$ we know there are such b
- One way to find such a *b* is to search over a (minimal) set $\mathcal{A}^n \subset \mathcal{A}_0$ such that $\mathcal{A}^n = \{a_j\}$ is an ϵ net for \mathcal{A}_0 with $\epsilon := (\frac{\hat{R}}{C})^{1/\alpha}$
 - Indeed, we know from our results on the forward map that $||u_a u_{a'}||_{H^1} \le C_0 ||a b||^{\alpha}$
 - Hence, the u_{a_j} are an ϵ' net for \mathcal{A}_0 with $\epsilon' = C_0 \hat{R}/C$
 - We use C so that we only have to approximately solve for u_a using the reduced space V^*
 - In fact, we never solve for u_a but rather use surrogate error estimators based on residuals- these are fast! —

Zürich 2017 – p. 28/32

Post Mortem

- The bottlenecks in the above algorithm for finding a ball are
 - Finding the space V^*
 - Can we do this via greedy selection?
 - The usual greedy algorithms do not take into account $\mu(\mathcal{N}, V)$
 - The discretization of \mathcal{A}^n this manifests itself when the number of parameters is large
 - For an affine model of the parameters, we quantize the y_j with fine quantization when $\|\psi_j\|_{L_{\infty}(D)}$ is large and coarse quantization when it is small

Finding a sketch of $\mathcal{S}_w(\eta)$

- A dream algorithm for sketching would be one which identifies an ϵ net for $S_w(\eta)$ whose size and computational costs are proportional to $N_{\epsilon}(S_w(\eta))$
- We proceed to describe the main ingredients of such algorithms in the case of the affine model
- One constructs recursively
 - Discretizations $\mathcal{A}^1, \mathcal{A}^2, \ldots$ of \mathcal{A}_0 using quantization of the y_j as described earlier
 - Reduced model spaces V_1, V_2, \ldots with control on $\mu(\mathcal{N}, V_n) \operatorname{dist}(\mathcal{M}, V_n)$
 - Using residual error estimators one can define cheap surrogates for computing $||w M(u_a)||_{\ell_2}$

Testing points in \mathcal{A}^n

- Points in \mathcal{A}^n can then be tested, i.e., one computes an approximation to $||w M(u_a)||_{\ell_2}$ at the needed accuracy and thereby \mathcal{A}^n can be decomposed into subsets
 - $\mathcal{A}^n(out)$: These are points in \mathcal{A}^n which one can not only say these points can not be in $\mathcal{S}_w(\eta)$ but also regions of \mathcal{A}_0 near these points can be eliminated from firther consideration because the residual error is too large. Here one uses the direct and inverse estimates.
 - *Aⁿ(in)*: These are points in *Aⁿ* that cannot be eliminated because the residual error estimate is not large enough
- The sets $\mathcal{A}^n(in)$ give finer and finer nets for $\mathcal{S}_w(\eta)$

Zürich 2017 – p. 31/32

Bottlenecks

- As before finding good educed model spaces $\mu(\mathcal{N}, V) \operatorname{dist}(\mathcal{M}, V)$
 - The usual greedy algorithms or polynomial basis selections do not pay attention to µ naturally because they were not formulated with measurements in mind
 - Greedy algorithms are numerically intensive
- The cardinality of the sets $\mathcal{A}^n(in)$ grow exponentially in *n* limiting how large one can choose *n*
- This may lie in the nature of the problem since ϵ nets typically grow like $\epsilon^{-\tau}$ with τ moderately large
- It would be good to have a priori theoretical bounds for $N_{\epsilon}(S_w(\eta))$

Zürich 2017 – p. 32/32