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Motivation

Parametric PDEs are used to model complex physical
systems

Uncertainty Quantification: We may have uncertainty in
the parameters (or even the model)

However we have some information (measurements) of
the state (solution to the pde)

Using this information, what can we say about the
parameters giving rise to this state?

This talk concerns rigorous theory to answer this
question
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The Setting

We limit ourselves to the friendly setting of Parametric
Elliptic PDEs

D ⊂ IRd is a Lipschitz domain and A is the collection of
diffusion coefficients a ∈ L∞(D) that satisfy the Uniform
Ellipticity Assumption

UEA : 0 < r ≤ a(x) ≤ R, x ∈ D, for all a ∈ A

For each a ∈ A we are interested in the solution ua to

−div(a(x)∇ua(x)) = f(x), x ∈ D,
ua(x) = 0, x ∈ ∂D

Let M := M(f,A) = {ua : a ∈ A} be the solution
manifold and F : a 7→ ua the solution map
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Additional Structure

Usually we work with subsets A0 ⊂ A which impose
additional structure on the diffusion coefficients

The affine model: a satisfies UEA, i.e. a ∈ A and

a(x, y) = ā(x) +
∑∞

j=1 yjψj(x), yj ∈ [−1, 1], j = 1, 2, . . .

Notation: P := [−1, 1]N the set of parameters and
u(x, y) := ua(x)

We typically impose further restrictions on the affine
decomposition such as decay for the ‖ψj‖L∞(D), for

example (‖ψj‖L∞(D))j≥1 ∈ ℓp with p < 1

Second example: As := As(M) := {a ∈ A : ‖a‖Hs ≤M}

Note in this example we still have the condition that
a ∈ L∞(D)
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Parameter Identification

First Question: Does ua determine a?

We fix f and ask whether the solution map F : a→ ua is
invertible

The answer depends on f .
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Parameter Identification

If for some a ∈ A we have ∇ua vanishes on an open
subset D0 ⊂ D then for any b which agrees with a
outside of D0, we have ua = ub and therefore there is no
uniqueness

To avoid this, we assume always that f ∈ L∞(D) and
f > 0 on D

Problem 1: Does this guarantee unique invertibility of F
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The forward map

Before analyzing the inverse map we recall results
about the smoothness of the forward map F

The usual estimate is

‖ua − ub‖H1(D) ≤
‖f‖H−1

r2 ‖a− b‖L∞(D)

The above is not useful when a, b have jump
discontinuities that do not match

Improved estimates (Bonito-DeVore-Nochetto): If

p ≥ 2 and q := 2p
p−2 then

‖ua−ub‖H1(D) ≤ r−1‖∇ua‖Lp(D)‖a− b‖Lq(D), q = 2p
p−2

Note that since a ∈ L∞(D), we obtain

‖ua − ub‖H1(D) ≤ C‖∇ua‖Lp(D)‖a− b‖θL2(D), θ = 2/q
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Sufficient conditions

The previous result requires ∇ua ∈ Lp

Sufficient conditions on a which guarantee ∇ua ∈ Lp?

There is always a range of p > 2 (depending only on
D ), i.e. 2 ≤ p < P . where this is true for all a ∈ A

Hence there is always a θ = θ(D) > 0 such that for
all a ∈ A we have

‖ua − ub‖H1(D) ≤ C ‖a− b‖θL2(D)

if a ∈ VMO then ∇ua ∈ Lp(D) for all p <∞
Hence for all 0 < θ < 1 and all a ∈ A ∩ VMO we
have

‖ua − ub‖H1(D) ≤ C ‖a− b‖θL2(D)

Here C depends on p and the VMO modulus of a
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Inverse Map 1D

If D = [0, 1] and f ≥ c > 0 is in L∞(D) the analysis is
simple

For any a, b ∈ A we have ‖ua − ub‖H1
≤ C‖a− b‖L2[0,1]

For any a, b ∈ A we have ‖a− b‖L2[0,1] ≤ C‖ua−ub‖
1/3
H1

The exponent 1/3 cannot be improved

Notice that these results hold with no additional
assumptions on a other than UEA, i.e. a ∈ A
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Higher Dimensions

In higher space dimension d ≥ 2 the situation is more
complex and the results are not as complete

We assume f ≥ c > 0 and f ∈ L∞(D), with D Lipschitz

In this setting, I do not even know if ua uniquely
determines a ∈ A (see Problem 1)

We can show unique determination of a and
smoothness for the inverse map ua 7→ a provided we
impose extra conditions on the diffusion coefficients a

In Bonito-Cohen-DeVore-Petrova-Welper we prove
results of the type

‖a− b‖L2(D) ≤ C‖ua − ub‖
β
H1(D)

In otherwords, we prove that the inverse map is Lip β
under additional assumptions on the diffusion coeff.
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Values of β

Under the additional assumption that the diffusion
coefficients are in A1(D) we have β = 1/6

Under the additional assumption that the diffusion
coefficients are in As(D) ∩VMO(ϕ) with s > 1/2, we can
prove that there is β = β(s) > 0

We can drop the VMO requirement provided
a, b ∈ As(D) and s > s∗ with s∗ < 1 depending only on D

These results do not apply if a, b are piecewise
constant. However, in this case we have the following:

Let Pn be the partition of D = [0, 1]d into nd cubes of
equal side length 1/n and let An be the set of
diffusion coefficients in A that are piecewise
constant subordinate to Pn

‖a− b‖L2
≤ Cn‖ua − ub‖H1(D), a, b ∈ An
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Lip β smoothness of inverse map
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Summary

Under moderate assumptions on the diffusion coeff.

‖ua − ub‖H1

0
(D) ≤ C‖a− b‖αL2(D) for some α > 0

‖a− b‖L2(D) ≤ C‖ua − ub‖
β
H1

0
(D)

for some β > 0

If we observe the full state ua this still does not tell us
how to find a. In most settings, we do not observe
the full state ua but rather just partial information,
namely, a finite number of measurements of the state

The remainder of this talk will address how well we
can expect to recover a with this partial information.
These are difficult questions- results are limited

In Uncertainty Quantification one assumes that
parameters occur with an underlying probability
distribution: the most closely related results are in
Schwab-Stuart - IP 2012
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The Numerical Setting

We assume that we have a finite number of
measurements lj(ua) = wj, j = 1, . . . ,m , of the state ua

Since we are in a Hilbert space H := H1
0 (D) we can

write lj = 〈·, ωj〉 with ωj ∈ H

We let W := span{ω1, . . . , ωm〉

Then we can view the information we have as we are
given w = PW (ua)

Let A0 ⊂ A where membership in A0 may impose
additional smoothness conditions on a. Once we have
A0 fixed there is an α, β

Notice that there are typically many a ∈ A0 for which
PW (ua) = w and so we need to clarify our goal.
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Non-uniqueness of M(ua) = w
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Goals

Given any w ∈ W (which may or may not be a
measurement of some ua, a ∈ A0) define the sets
Sw(η) := {b ∈ A0 : ‖PW (ub)− w‖L2(D) ≤ η}, η ≥ 0

Ideal Goal: Describe Sw(0)

This is too demanding for several reasons

Noise: If measurements are noisy, say we observe ŵ
then the a we seek is only in Sw(δ) for some δ > 0
depending on the noise level

Numerical issues: We cannot expect to compute an
a in Sw(η) only an approximation to such an a

Computational resources: Decreasing η will eat up
more and more computational resources eventually
becoming unreasonable
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Possible Goals: Smallest Ball

The user provides a tolerance η ≥ 0,

Smallest Ball: Find a ball B(a∗, R∗) in L2(D) such that
a∗ ∈ A0 and Sw(η) ⊂ B(a∗, R∗) with the ball as small as
possible:

The smallest ball is the Chebyshev ball of Sw(η)

a∗ would give a (coarse) approximation to all
possible a
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Smallest ball for Sw(0)
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Possible Goals: Sketch

The user provides a tolerance η ≥ 0,

Sketch: Find a small discrete set Ŝ that gives an ǫ net
for Sw(η)

Smallest set is the entropy cover of Sw(η)

Therefore we would like cardinality of Ŝ to be
comparable to the covering number Nǫ(Sw(η))
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Sketch for Sw(η)

Zürich 2017 – p. 20/32



ǫ net
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Covering
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Smallest Ball

Algorithms for finding the smallest ball have three
components

I. Use w to find û ∈ H1(D) and R̂ such that B(û, R̂)
contains all ua, a ∈ A0, such that M(ua) = w

II. Find b ∈ A0 such that ub approximates û at least

to the precision R̂

III. Use the smoothness of the inverse map and the

knowledge of ub to find a ball B(b, R̃) which contains
all a ∈ A0 such that M(ua) = w

III. Our inverse theorem gives R̃ ≤ C(2R̂)β. Indeed,

‖a− b‖L2(D) ≤ C‖ua − ub‖
β
H1

0
(D)

≤ C(2R̂)β

So Task III is easy once the other tasks are complete
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I. by Reduced Modeling

Task I is complicated by the fact that the solution
manifold M := {ua : a ∈ A0} is not easy to understand

Strategy is to replace M by a reduced model

Such models produce a low dimensional linear space

V ⊂ H1(D) such that dist(M, V ) is small enough to
complete Task I

Two strategies for doing this

Greedy Algorithms

High dimensional polynomial expansions
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Greedy algorithms

These algorithms choose (through greedy selection)
snapshots v1 = ua1

, . . . , vn := uan
so that

Vn := span{v1, . . . , vn} is a good approximation to M

Greedy strategy introduced by
Buffa-Maday-Patera-Prud’homme-Turinici chooses the
k-th snapshot which is furthest from Vk−1

Theorem
(Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk)

If there exist n dimensional spaces Yn ⊂ H1
0(D) such

that dist(M, Yn) ≤ Cn−α, n = 1, . . . , N then

dist(M, Vn) ≤ C ′n−α, n = 1, . . . , N

Almost optimal in terms of n widths

These algorithms have a very costly off-line
implementation
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Polynomial Expansions

Cohen-DeVore-Schwab I,II,
Chkifa-Cohen-DeVore-Schwab, +

If the a have an affine expansion with
(‖ψj‖L∞(D))j≥1 ∈ ℓp, p < 1

Then u(x, y) =
∑

ν uν(x)y
ν with (‖uν‖H1

0
(D)) ∈ ℓp

It follows that for each n ≥ 1, there is a set Λn such that

#(Λn) = n

sup
y∈P

‖u(·, y)−
∑

ν∈Λn

uνy
ν‖H1

0
(D) ≤ Cn−1/p+1

This gives certifiable decay of n widths of M

uν found by recursively solving PDEs

Finding Λn costly
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Assimilating Data

Take a reduced space V = Vn: what is a good choice for
V will be uncovered as we proceed

Let N be the null space of the measurement map M

Define µ(N , V ) := sup
η∈N

‖η‖H1

dist(η, V )H1

µ is the reciprocal of the angle between V and W

Let v∗(w) = Argminv∈V ‖w −M(v)‖ℓ2

Then, Maday-Patera -Penn-Yano show that the ball

B(v∗(w), R̂), with R̂ := 2µ(N , V ∗)dist(M, V ∗)H1, contains
all ua ∈ M such that M(ua) = w. So we take û := v∗(w)

The best choice V ∗ is one which minimizes
µ(N , V )dist(M, V )H1 over all V ⊂ H1

0 . This would

complete Task I with R̂ = 2µ(N , V ∗)dist(M, V ∗)H1
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Task II

We know û := v∗(w) and we want to find b ∈ A0 such

that ‖v∗(w)− ub‖H1

0
(D) ≤ CR̂

As long as C ≥ 2 we know there are such b

One way to find such a b is to search over a (minimal)
set An ⊂ A0 such that An = {aj} is an ǫ net for A0 with

ǫ := ( R̂C )
1/α

Indeed, we know from our results on the forward
map that ‖ua − ua′‖H1 ≤ C0‖a− b‖α

Hence, the uaj
are an ǫ′ net for A0 with ǫ′ = C0R̂/C

We use C so that we only have to approximately
solve for ua using the reduced space V ∗

In fact, we never solve for ua but rather use surrogate
error estimators based on residuals- these are fast!
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Post Mortem

The bottlenecks in the above algorithm for finding a ball
are

Finding the space V ∗

Can we do this via greedy selection?
The usual greedy algorithms do not take into
account µ(N , V )

The discretization of An - this manifests itself when
the number of parameters is large

For an affine model of the parameters, we quantize
the yj with fine quantization when ‖ψj‖L∞(D) is large

and coarse quantization when it is small

Zürich 2017 – p. 29/32



Finding a sketch of Sw(η)

A dream algorithm for sketching would be one which
identifies an ǫ net for Sw(η) whose size and
computational costs are proportional to Nǫ(Sw(η))

We proceed to describe the main ingredients of such
algorithms in the case of the affine model

One constructs recursively

Discretizations A1,A2, . . . of A0 using quantization of
the yj as described earlier

Reduced model spaces V1, V2, . . . with control on
µ(N , Vn)dist(M, Vn)

Using residual error estimators one can define
cheap surrogates for computing ‖w −M(ua)‖ℓ2
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Testing points in An

Points in An can then be tested, i.e., one computes an
approximation to ‖w −M(ua)‖ℓ2 at the needed accuracy
and thereby An can be decomposed into subsets

An(out): These are points in An which one can not
only say these points can not be in Sw(η) but also
regions of A0 near these points can be eliminated
from firther consideration because the residual error
is too large. Here one uses the direct and inverse
estimates.

An(in): These are points in An that cannot be
eliminated because the residual error estimate is not
large enough

The sets An(in) give finer and finer nets for Sw(η)
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Bottlenecks

As before finding good educed model spaces
µ(N , V )dist(M, V )

The usual greedy algorithms or polynomial basis
selections do not pay attention to µ - naturally
because they were not formulated with
measurements in mind

Greedy algorithms are numerically intensive

The cardinality of the sets An(in) grow exponentially in
n limiting how large one can choose n

This may lie in the nature of the problem since ǫ nets
typically grow like ǫ−τ with τ moderately large

It would be good to have a priori theoretical bounds for
Nǫ(Sw(η))
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